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Problem Solving and Learning
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Newell and Simon (1972) provided a framework for un-
derstanding problem solving that can provide the needed
bridge between learning and performance. Their analysis
of means-ends problem solving can be viewed as a general
characterization of the structure of human cognition.
However, this framework needs to be elaborated with a
strength concept to account for variability in problem-
solving behavior and improvement in problem-solving skill
with practice. The ACT* theory (Anderson, 1983) is such
an elaborated theory that can account for many of the
results about the acquisition of problem-solving skills. Its
central concept is the production rule, which plays an
analogous role to the stimulus-response bond in earlier
learning theories. The theory has provided a basis for con-
structing intelligent computer-based tutoring systems for
the instruction of academic problem-solving skills.

Thorndike's (1898) original learning experiments in-
volved cats learning to solve the problem of getting out
of a puzzle box. As most introductory psychology texts
recount, Thorndike concluded that his cats managed to
get out of the puzzle box by a trial and error process. In
Thorndike's conception there was really nothing happen-
ing that could be called problem solving. What was hap-
pening was the gradual strengthening of successful re-
sponses. Thorndike's research is often cited as the begin-
ning of the analysis of learning that occupied American
psychology for much of this century. It could also be cited
as the beginning of the neglect of problem solving as a
topic worthy of analysis.

Although Kohler (e.g., 1927) and the other Gestalt
psychologists used problem-solving tasks to demonstrate
the inadequacies in the behaviorist conceptions of learn-
ing, they failed to offer an analysis of the problem-solving
process. Tolman (1932) saw the critical role of goals in
learning and behavior but failed to put that insight into
a coherent theory, leaving him vulnerable to Guthrie's
(1952) famous criticism that he left his rat buried in
thought and inaction.

Problem solving finally was given a coherent pro-
gram of analysis by Newell and Simon (1972) in a line
of research that culminated in their book Human Problem
Solving. The basic conception of problem solving they
set forth continues to frame research in the field. Their
conception had its foundation in artificial intelligence and

computer simulation of human thought and was basically
unconnected to research in animal and human learning.

Research on human learning and research on prob-
lem solving are finally meeting in the current research
on the acquisition of cognitive skills (Anderson, 1981;
Chi, Glaser, & Farr, 1988; Van Lehn, 1989). Given nearly
a century of mutual neglect, the concepts from the two
fields are ill prepared to relate to each other. I will argue
in this article that research on human problem solving
would have been more profitable had it attempted to in-
corporate ideas from learning theory. Even more so, re-
search on learning would have borne more fruit had
Thorndike not cast out problem solving.

This article will review the basic conception of prob-
lem solving that is the legacy of the Newell and Simon
tradition. It will show how this conception solves the gen-
eral problem of the relationship between learning and
performance that has haunted learning theory. In partic-
ular, it provides a concrete realization of Tolman's in-
sights. I will also present the case for problem solving as
the structure that organizes human thought and means-
ends analysis as the principal realization of that structure.
I will argue, however, that this research has been stunted
because of its inability to deal with variability and change
in behavior.

Then I will turn to the more recent research on ac-
quisition of cognitive skills. I will discuss the critical role
of the production rule, a computational improvement
over the stimulus-response bond, in organizing that re-
search. I will show how the acquisition of complex skills
can be accounted for by the separate acquisition of these
rules, thus realizing the goal of learning theory to account
for complex learning in terms of the acquisition of simple
units. I will close by discussing the implications of this
analysis for education, one of Thorndike's great concerns.
Here I will describe my own research on intelligent tu-
toring systems, which has been based on the recent in-
sights into problem solving and learning. We have been
able to greatly accelerate and improve the acquisition of
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complex skills, such as proof skills in geometry or com-
puter programming skill. This serves to illustrate the
powerful practical applications that can be achieved if
only the fields of problem solving and learning listen to
each other.

Canonical Conception of Problem
Solving

In this section I will try to sketch the canonical conception
of problem solving that has its origins with the work of
Newell and Simon.

Problem Space

The concept of a problem-solving state is probably the
most basic term in the Newell and Simon characterization
of problem solving. A problem solution can be charac-
terized as the solver beginning in some initial state of the
problem, traversing through some intermediate states, and
arriving at a state that satisfies the goal. If the problem
is finding one's way through a maze, the states might be
the various locations in the maze. If the problem is solving
the Tower of Hanoi problem (see Figure 1), the states
would be various configurations of disks and pegs.' The
actual reference of state is ambiguous. It could mean ei-
ther some external state of affairs or some internal coding
of that state of affairs. Newell and Simon, with their em-
phasis on problem solving by computer, typically took it
to mean the internal coding.

The second key construct is that of a problem-solving
operator. An operator is an action that transforms one
state into another state. In the maze the obvious operators
are going from one location to another, whereas in Tower
of Hanoi they are various movements of disks. An op-
erator can be characterized by what must be true for it
to apply and what change it produces in the state. In the
case of the maze, there must be a path between the two
locations for the move operator, and its effect is to change
the location of the organism. In the case of Tower of
Hanoi, the disk to be moved must be on top of the source
peg and must be smaller than the smallest disk at the
destination peg. Its effect is to change the location of the

Figure 1
lower of Hanoi Problem

Figure 2
Problem Space lor the Three-Disk Tower of Hanoi Problem
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Note. Adjacent configurations can be reached by a single, legal move of the
disk.

disk. Newell and Simon conceived of the problem solver
as having an internal representation of the operators, their
preconditions, and their effects.

Together the concepts of state and operator define
the concept of a problem space. At any state some number
of operators apply, each of which will produce a new state,
from which various operators can apply producing new
states, and so forth. Figure 2 illustrates the complete
problem space for the three-disk Tower of Hanoi problem,
one of the smaller of the problem spaces. As can be seen,
many problem spaces are closed with only a finite set of
reachable states and loops among those states. Within the
problem-space conception, the problem in problem solv-
ing is search, which is to find some sequence of problem-
solving operators that will allow traversal in the problem
space between the current state and a goal state.

In contrast to states and operators, Newell and Simon
did not hold that there is an internal representation of
an entire problem space. Rather problem solvers can dy-
namically generate paths in this space by applying their
operators. This generation process can either be done ex-
ternally, in which case direct actions are taken, or inter-
nally, in which case the problem solver imagines some
sequence of actions to evaluate them.

Problem-Solving Methods

Whether one is performing operators externally or imag-
ining them, the critical issue is how to select the next

Start Finish
peg peg

Note. The goal is to move all the disks from the start peg to the finish peg. Only
one disk may be moved at a time, and one cannot place a larger disk on a smaller
disk.

1 The Tower of Hanoi task is one of a number of "toy" tasks that
had an important role in the early development of ideas about problem
solving. Studies of problem solving have now extended to complex and
important problem-solving tasks. However, the Tower of Hanoi task and
others like it remain useful both for exposition of the basic concepts and
as paradigms for studying these concepts in relative isolation.
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operator. The term problem-solving method refers to the
principles used for selecting operators. The method cho-
sen can vary from blind search to executing an algorithm
that is guaranteed to find a minimum-step solution.
Problem solvers' behavior in a particular situation can
be understood by knowing which method is being used.
Artificial intelligence textbooks (e.g., Nilsson, 1971) fre-
quently recount a large array of often exotic methods.
Anderson (1990b) can be consulted for evidence that hu-
mans at various times use some of the simpler methods.
For instance, people tend to select operators that create
states more similar to the goal state (this method is called
hill climbing). The next subsection discusses in some de-
tail the method of means-ends analysis, which seems to
be the premier human problem-solving method.

Although problem solving can be typically under-
stood as some method applying in a fixed problem space,
occasionally problem solving can progress by changing
the problem space by re-representing the problem states
or the operators or by adding new operators. These tend
to be thought of as the more insightful problem solutions.
Research on functional fixedness (e.g., Duncker, 1945)
can be thought of in these terms, as can research on prob-
lem-solving representation (e.g., Kaplan & Simon, 1990).

Newell and Simon in their 1972 monograph showed
how to apply their method of analysis to a number of
problem-solving situations. By characterizing a subject's
representation of states, his or her operators, and the
problem-solving method, one is able to simulate the be-
havior of subjects down to the point of predicting every
(or nearly every) move they make in a complex problem-
solving episode. One can walk away from such an analysis
with the claim of having understood the episode in a fairly
rich and detailed way. Although the issue of evaluating
the fit of such a simulation model to the episode has always
been a sore point, often the qualitative fit can be quite
compelling.

It is of interest to consider the outlines of the appli-
cation of this analysis to some classic learning task such
as an animal learning to run a maze. Under this analysis
the learning that takes place is effectively operator learn-
ing—learning that moving along a path will get the animal
from one location to another. The performance that takes
place would use this operator knowledge through some
problem-solving method to achieve the goal. Thus, as
Tolman (1932) insisted, learning is separate from perfor-
mance, and it is goals that trigger the conversion of what
has been learned into performance. Tolman was criticized
for not unpacking how that conversion took place. It is
the problem-solving method that converts what is learned
into performance in service of a goal. Thus, the rat is no
longer left lost in thought, and there is nothing nonme-
chanical guiding the animal through the maze.

Means—Ends Analysis

Two key features often observed of human problem solv-
ing are difference reduction and subgoaling. Difference
reduction refers to the tendency of problem solvers to
select operators that produce states more similar to the

goal state. People are very reluctant to pursue paths that
temporarily take them in the direction of states less similar
to the goal (see Anderson 1990b). One of Kohler's (1927)
interests was to understand the difficulties various species
of animals have with detour problems that require them
to take a nondirect path to the goal. So the reliance on
similarity is hardly unique to humans. Anderson (1990a)
can be consulted for arguments that this reliance on sim-
ilarity is adaptive in that most problems can be effectively
solved by moving in the direction of the goal. Of course,
how one measures similarity can be tricky, and some
kinds of problem-solving learning take the form of de-
veloping more useful ways of assessing similarity to the
goal state. This is often characterized as problem solvers
going beyond the surface features of a problem to its deep
features (e.g., Chi, Feltovich, & Glaser, 1981).

Subgoaling can be nicely illustrated in the Tower of
Hanoi problem. For instance, consider the following pro-
tocol of one of Neves's (1977) subjects who was faced
with the Tower of Hanoi problem in Figure 3:

The 4 has to go to the 3,
But the 3 is in the way.
So you have to move the 3 to the 2 post.
The 1 is in the way there.
So you move the 1 to the 3.

As in this case, subgoaling can involve creating a
stack of such subgoals. Simon (1975) discussed the dif-
ficulty in remembering these subgoals. .Anderson and
Kushmerick (in press) showed that the time to make a
move in the Tower of Hanoi task is strongly correlated
with the number of subgoals that must be set before that
move.

Means-ends analysis provides a way of understand-
ing why difference reduction and subgoaling are so per-
vasive in human problem solving and how they relate to
one another. Figure 4 illustrates the logic of means-ends
analysis. The basic cycle of the problem solver is to look
for the biggest difference between the current state and
the goal state and try to reduce that difference. The prob-
lem solver makes a subgoal of eliminating that difference.
Thus, if a problem solver correctly perceives the Tower
of Hanoi problem, he or she would consider the biggest
difference to be the largest disk out of place, as did Neves's
(1977) subject. The problem solver searches for some op-
erator relevant to removing that difference. If the operator
can be applied, it is, and problem solving progresses for-

Figure 3
State of Tower of Hanoi Problems Facing the Subject
Whose Protocol is Reported in the Article
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Figure 4
Application of Means-Ends Analysis

Flowchart I Goal: Transform current state into goal state
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Note. Flowchart I breaks a problem down into a set of differences and tries to eliminate each. Flowchart II searches for an operator relevant to eliminating a difference.

ward. However, if it cannot (as when a disk blocks the
move of another disk in Tower of Hanoi), the problem
solver sets the subgoal of eliminating the blocking con-
dition. Thus, for instance, Neves's subject set the subgoal
of removing Disk 3, which was blocking the move of Disk
4. The problem solver no longer is working on the original
goal but is working on a subgoal, which is only a means
to the ultimate end. The three key features of means-
ends analysis are the focus on eliminating a single large
difference, the selection of operators by what differences
they reduce, and the subgoaling of the preconditions of
the operator if they are not met in the current state. An-
derson (1990a) can be consulted for a general analysis of
why this problem-solving method can lead to optimal
problem solving in novel situations.

Means-ends analysis does not just apply to exotic
laboratory puzzles. Newell and Simon (1972) emphasized
that it is found in all aspects of life. Consider, for instance,
their following example:

I want to take my son to nursery school. What's the difference
between what I have and what I want? One of distance. What
changes distance? My automobile. My automobile won't work.
What is needed to make it work? A new battery. What has new
batteries? An auto repair shop. I want the repair shop to put in
a new battery; but the shop doesn't know I need one. What is
the difficulty? One of communication. What allows communi-
cation? A telephone . . . and so on. (p. 416)

Whereas it would be incorrect to assert that all hu-
man problem solving is organized by means-ends anal-
ysis, this problem-solving method has played the largest

role in accounting for behavior in puzzles like Tower of
Hanoi, academic problem solving (Larkin, McDermott,
Simon, & Simon, 1980), and everyday problem solving
(Klahr, 1978). Often because of the structure of the prob-
lem, all the aspects of the underlying means-ends method
do not manifest themselves. Thus, problem solving on
certain puzzles may look like hill climbing (e.g., Jeffries,
Poison, Razran, & Atwood, 1977) because the operators
for the problem do not have the kind of prerequisite
structure that leads to subgoaling, and so we only see
difference reduction. Conversely, a problem may look like
pure subgoal decomposition (Anderson, Farrell, & Sauers,
1984) because there is no similarity structure to guide
the choice of subgoals.

It is of interest to speculate how far means-ends
analysis is found down the phylogenic scale and devel-
opmental scales. Klahr (1978) has argued that children
are quite capable of means-ends analysis. Their problem
solving is often ineffective because of inadequate repre-
sentation of the problem, and they become more effective
means-ends problem solvers when their representations
of the problem and the operators become sophisticated
enough to enable means-ends problem solving to apply.
Kohler's (1927) characterization of chimpanzee problem
solving would seem to imply a means-ends capacity for
them, even as his more dismal characterization of lower
organisms would imply they do not have a means-ends
capacity. There should be a very strong connection be-
tween tool manufacture and use and means-ends problem
solving. A tool is a concrete means to an end. My own
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belief is that the means-ends problem-solving method is
an innate part of the cognitive machinery of humans and
other primates.

Centra/ Role of Problem Solving in Cognition

The remark above about the possible innate status of the
means-ends method raises the issue of how to conceive
of the place of problem solving in cognition generally.
There is a tendency of some psychologists to view research
on problem solving as a narrow domain approximately
equivalent to research on mathematical behavior. That
is, it is an intellectual activity that we may engage in a
few times a day and that can be understood in terms of
principles of cognition more general than problem solv-
ing. This is far from how some researchers on problem
solving (e.g., Newell, 1980) have viewed the matter. For
them, all higher level cognition is problem solving. This
is an implication of the proposal made above for how
problem solving provides the bridge between learning and
performance. The problem-solving methods provide the
mechanisms for converting knowledge into behavior, in-
cluding cognitive behavior. They provide this bridge
everywhere and not just with esoteric puzzles.

One problem with the claim for the central role of
problem solving is that much of human cognition does
not feel like problem solving. Some activities, like solving
a Tower of Hanoi problem or solving a new kind of physics
problem, feel like problem solving, whereas other more
routine activities, such as using a familiar computer ap-
plication or adding up a restaurant bill, do not. This re-
flects the difference between the reference of problem
solving in everyday speech and its use by researchers. In
everyday speech the term problem solving refers to activ-
ities that are novel and effortful. The theorist's claim is
that the underlying organization of these activities is no
different from the underlying organization of the more
routine.

Newell (1980) argued that the dimension of differ-
ence between routine problem solving and real problem
solving is the amount of search involved. When we be-
come familiar with a problem domain, we learn which
operators apply without having to search among them.
The experience of effort is correlated with the amount of
problem-solving search. Newell argued that we are always
in a search space, as witnessed by what happens when
we hit on some novel problem state in an otherwise rou-
tine problem space. Newell claimed that we transit
smoothly into problem-solving search and indeed that
much of human cognition is a mixture of routine problem
solving and problem solving that involves search. This
claim is realized in his Soar model of cognition (Newell,
1990).

Complications With the Canonical
Conception
In this section, I consider problems with the canonical
conception of problem solving that arise because of its
failure to incorporate the perspective of a learning theory.

Variability in Problem Solving

One of the things that is apparent when human problem
solving is considered is that the solutions produced vary
across replications of the problem with different individ-
uals or indeed for the same individual on different oc-
casions. This variability shows up in subjects taking dif-
ferent paths of solutions to solve a problem and in terms
of their making occasional errors in their problem solving.
It is not much noted, but if one looks at the latencies one
sees considerable variability in the times required to per-
form the same step of a solution (Anderson, Kushmerick,
& Lebiere, in press). Such variability has been observed
by many researchers in human problem solving but is
perhaps best documented in our research on LISP pro-
gramming where we observed more than 100 students
solving more than 100 LISP programming problems
(Anderson, Conrad, & Corbett, 1989). The canonical
problem-solving framework with its emphasis on deter-
ministic behavior is not well prepared to handle this vari-
ability.

There are two basic ways that such variability has
been approached within the canonical framework. One
is to attribute the differences to differences among the
cognitive models of different people (and sometimes
among the cognitive models of the same person at different
times). In the standard framework, this comes down to
differences in problem-solving representations, operators,
and methods. This leads to a style of theorizing in which
separate models are proposed for each subject, which cre-
ates a frustrating problem of generality in the claims that
can be made.

Perhaps the most hopeful effort of this sort has been
the attempt to account for errors in problem solving in
terms of bugs or misconceptions about the problem do-
main (e.g., Brown & Van Lehn, 1980). In one notable
effort, Burton (1982) accounted for a large fraction of
subtraction errors by assuming over 100 different bugs.
The term bugs comes from analogy to programming
where a program can have an error that leads to a sys-
tematic mistake. It was hoped that we could come up
with a theory of the origins of these bugs in terms of the
learning history of the students (e.g., Van Lehn, 1989).
A learning account of variability would be a way to
achieve generality. Unfortunately, subsequent research has
cast doubt on the systematicity of these errors (Anderson
& Jefferies, 1985; Anderson & Reder, 1992; Katz & An-
derson, 1988; Payne & Squibb, 1990). Often students are
best characterized as doing the right thing most of the
time and, when they make errors, being unsystematic in
the errors they make.

The second approach is simply to assume a certain
randomness in which alternative operators (perhaps some
buggy) are indiscriminately chosen among. This has not
been a popular move but can be found in some attempts
to deal with the statistical distribution of solutions across
subjects (e.g., Atwood & Poison, 1976; Jeffries et al.,
1977). This approach certainly has a grain of truth to it,
but it fails to reflect the systematicity that does exist in
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the choices that are made. Anderson et al. (in press) were
able to show that the distribution of choices among op-
erators was strongly correlated with the optimality of the
operators. Also, the frequencies of erroneous choices de-
crease gradually (within a single subject) with experience.

Variability in behavior and the gradual improvement
of the distribution of responses with experience are, of
course, the bread and butter of typical learning theories.
This suggests that problem-solving approaches would do
well to incorporate into their analyses some of the stan-
dard ideas from learning theory. The trick is to do this
and maintain the computational power of existing ap-
proaches that is clearly needed to deal with the complex,
coordinated structure of a problem-solving sequence.

Learning in Knowledge-Rich Domains

In the last decades, there has been a surge of research on
how the transition is made from novel to routine problem
solving as one gathers experience with a problem domain.
This reflects a shift in research interest both toward
learning and toward knowledge-rich, real problem-solving
domains, such as physics, and away from knowledge-lean
toy tasks like the Tower of Hanoi. This effort has identified
both strengths and weaknesses in the canonical theory.

A great deal of this research has taken the form of
comparing subjects who are relative experts at a problem-
solving task with subjects who are relative novices at the
task. Inferences are made about learning on the basis of
the comparisons. Perhaps the most significant single ob-
servation is that no one achieves a high level of perfor-
mance in any domain without a great investment of time.
Hayes (1985) estimated that it takes 10 years to achieve
master's levels of performance in most professional do-
mains. This indicates that problem-solving expertise does
not come from superior problem-solving ability but rather
from domain learning.

Not surprisingly, there are great differences between
problem-solving experts and novices as a function of the
extensive learning experiences of the experts. These dif-
ferences are reviewed in Anderson (1990b) and Van Lehn
(1989).

Some of these differences appear to be nicely cap-
tured within the canonical model. For instance, there are
changes in how experts go about solving problems. It is
possible to separate these changes into what has been
called tactical learning and strategic learning. Tactical
learning refers to the acquisition of new, often more com-
plex problem-solving operators. So, for instance, with
practice geometry students learn to recognize vertical an-
gle configurations involving triangles they are trying to
prove congruent (e.g., Anderson, 1990b). Strategic learn-
ing refers to wholesale changes in the methods students
use to organize their problem solving. So, novice problem
solvers in physics work backwards from what they are
trying to find to the givens of the problem, whereas experts
work in the opposite direction (e.g., Larkin et al., 1980).
In programming, more expert students will use top-down,
breadth-first progressive refinement, whereas novices will
not (Jeffries, Turner, Poison, & Atwood, 1981). In all

cases, the expert is adopting approaches that are effective
for that problem domain. In the case of programming,
the strategy is explicitly taught as the structured pro-
gramming methodology in programming courses; in the
case of physics, it appears to be induced.

Experts also appear to use better problem represen-
tations. In particular, experts appear to represent prob-
lems in terms of deeper features, which are connected to
problem-solving success, rather than superficial features.
For instance, Chi et al. (1981) found that novices sorted
problems on superficial features, such as whether they
involved inclined planes, whereas experts sorted them
according to Newton's laws.

Increased Problem-Solving Capacity

In contrast to these improvements that seem to be cap-
tured by changes in the problem space, other changes
seem to reflect a fundamental increase in capacity for
solving problems within a fixed problem space. For in-
stance, there is evidence for improved memory for prob-
lem states. This was first well documented with respect
to chess, where it was shown that chess experts were able
to reproduce much more of a chessboard given a brief
exposure than were chess novices (Chase & Simon, 1973).
The same phenomenon has been shown subsequently in
a large number of domains. It was first thought that this
could be accounted for by the fact that experts had learned
a great many complex problem patterns and so could
store in a single chunk information that novices required
many chunks to store. That is, it was thought it could be
accounted for by changes in problem-solving represen-
tations. However, newer evidence and analysis now in-
dicate that experts can store more information (more
chunks) in long-term memory (Charness, 1976; Van
Lehn, 1989). This increased long-term memory capacity
is something outside the canonical theory. It does not
contradict the canonical theory, but the canonical theory
does not provide the terms to explain it.

One of the most straightforward effects of increased
practice of a particular skill is that it is performed more
quickly and more accurately. The form of the reduction
of time or errors with practice can be shown (Newell &
Rosenbloom, 1981) to be a power function of the form

P = AN~b,

where P is the performance measure (time or errors), A
is a scaling constant, ./Vis the number of trials of practice,
and b is a constant usually less than one that reflects
learning rate. The fact that learning satisfies this func-
tional form is not altogether trivial. The typical learning
function that has been proposed in most learning theories
is exponential:

P = AbN,

where b is again less than one. The exponential learning
function has the intuitively appealing property that for
each unit of practice, performance improves by a constant
fraction b. This predicts much more rapid learning than
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what is observed. The fact that power-law learning is
ubiquitous creates an interesting connection between
learning theory and problem solving because the power
law also describes simple learning situations, such as
learning paired associates, as well as extremely complex
problem solving, such as learning to do proofs in ge-
ometry. Newell and Rosenbloom (1981) developed a the-
ory of power-law learning that holds this result derives
from learning more and more complex operators. How-
ever, this explanation applies only in the case of combi-
natorially complex tasks, and it does not seem to apply
to simple tasks like paired-associate learning. Rather, this
learning appears to reflect general associative strength-
ening mechanisms. Anderson (1982) argued that it is a
simple strengthening process that accounts for all power-
law learning including that which is occurring in com-
binatorially complex problem-solving tasks.

The ACT* Theory of the Acquisition of
Problem-Solving Skills

The list of changes that occur with experience (only par-
tially reviewed above) is probably too challenging to ac-
count for with a single theoretical proposal. Certainly, no
one-factor theory has been forthcoming. I describe here
my ACT* theory (Anderson, 1982, 1987, 1989) of the
learning process, which captures some of the major em-
pirical trends and offers some straightforward connections
to more traditional research on human learning. This
section concludes with a description of the application of
this theory to the development of intelligent tutors.

Basic Concepts in the ACT* Theory

The ACT* theory of cognition (Anderson, 1983) makes
a distinction between declarative knowledge, which en-
codes our factual knowledge, and procedural knowledge,
which encodes much of cognitive skill including problem-
solving skill. The theory assumes that problem solving
takes place basically within a means-ends problem-solv-
ing structure. ACT* is a theory of the origin and nature
of the problem-solving operators that feed the means-
ends engine. It assumes that when a problem solver
reaches a state for which there are no adequate problem-
solving operators, the problem solver will search for an
example of a similar problem-solving state and try to
solve the problem by analogy to that example. There is
substantial evidence that a subject's early problem solving
is strongly influenced by analogy to similar examples (e.g.,
Pirolli, 1985; Ross, 1984). Anderson and Thompson
(1989) have developed a simulation model of this analogy
process.

This initial stage of problem solving is called the
interpretative stage. It often requires recalling specific
problem-solving examples and interpreting them. The
memories retrieved are declarative memories. However,
there is no necessary long-term memory involvement.
For instance, students use examples in a mathematics
section to guide solution to a problem given at the end
of the section without ever committing the examples to

memory. It is interesting in this regard to consider how
amnesia patients who suffer serious deficits to long-term
declarative memory might acquire a problem-solving
skill. Phelps (1989) has argued that this can happen only
when the examples from which they work are present in
the environment and do not have to be recalled from
long-term memory.

The interpretive stage can involve substantial ver-
balization as the learner rehearses the critical aspects of
the example from which the analogy derives. There is a
dropout of verbalization that is associated with the tran-
sition from this interpretive stage to a stage where the
skill is encoded procedurally. Knowledge compilation is
the term given to the process of transiting from the in-
terpretive stage to the procedural stage.

Procedural knowledge is encoded in terms of pro-
duction rules that are condition-action pairs, such as the
following two from geometry:

IF the goal is to prove two triangles congruent,
THEN try to prove corresponding parts are congruent.

IF segment AB is congruent to segment DE, and segment BC
is congruent to segment EF, and segment AC is congruent
to segment DF,

THEN conclude triangle ABC is congruent to triangle DEF
because of the side-side-side postulate.

These rules are basically encodings of the problem-
solving operators in an abstract form that can apply across
a range of situations. The Anderson and Thompson (1989)
model shows how one can extract such problem-solving
operators in the process of doing problem solving by
analogy. Knowledge, once in production form, will apply
much more rapidly and reliably.

Strength of Knowledge Encoding

According to the ACT* theory, a critical factor that de-
termines both the accessibility of declarative knowledge
and the performance of procedural knowledge is the
strength of encoding of this knowledge, which basically
reflects amount of practice. According to the ACT* the-
ory, this strength grows as a power function of practice.
(For an in-depth analysis of why it is a power function,
see Anderson & Schooler, 1991.) It is this growth of
strength that controls the power-function improvements
occurring in skill learning. Anderson (1982) showed that,
although other learning processes such as knowledge
compilation are at work, the factor that controls rate of
learning is strength. For instance, to compile a production
rule from an example, the example has to be retrieved
and maintained in working memory, which will depend
on its strength of encoding. Thus, according to ACT* the
ubiquitous power law of learning reflects the ubiquitous
growth of strength of knowledge with practice. It is curious
to note that the growth of strength in ACT* is just a
particular instantiation of Thorndike's law of exercise,
which he later rejected. However, there is good evidence
for a law of exercise with respect to dependent measures
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like speed of performance of a problem-solving skill (even
in the absence of external feedback).

The concept of strength in ACT* is much like other
strength concepts that have appeared in other theories of
learning and memory over this century. In particular, the
probability of a particular production rule applying is a
function of its strength. This probabilistic manifestation
of strength accounts for the gradual disappearance of er-
rors and for the variation in how people solve problems.
There can be multiple productions (some correct, some
not) that might apply at a particular time, and the prob-
ability of each will reflect their strength. Thus, the ACT*
theory has no problem dealing with the phenomenon of
variability in problem-solving behavior. More recently,
Anderson et al. (in press) reported considerable success
applying the theory to the specific distribution of problem
choices.

Intelligent Tutoring Research

I conclude with a discussion of the work we (Anderson,
Boyle, Corbett, & Lewis, 1990) are doing on intelligent
tutoring, both as an indication of the application of this
approach and as a source of further evidence for the theory
of problem-solving skill outlined above. Work on intel-
ligent tutoring (for a review see Poison & Richardson,
1988) refers to efforts to create computer-based systems
for instruction using artificial intelligence approaches. The
approach to development of intelligent tutors that we take
is called the model-tracing approach. It involves devel-
oping a cognitive model of the skill that should be learned
(e.g., doing proofs in geometry or writing computer pro-
grams in the language LISP). This model takes the form
of a set of production rules that can solve the class of
problems the student is being asked to solve in the same
way that the student should solve the problems. Our ap-
proach is relatively unique in the field in terms of the
strong emphasis it places on use of a real-time cognitive
model in instruction.

Our tutors interact with the students while they try
to solve a problem on the computer. It is assumed that
the student is taking an overall means-ends approach
and that learning involves acquiring production rules that
encode operators to use within this problem-solving or-
ganization. The tutor tries to interpret the student's prob-
lem solving in terms of the firing of a set of production
rules in its cognitive model. The instruction and help it
delivers to the student is determined by its interpretation
of the student's problem-solving state; furthermore, its
choice of subsequent problems to present to the student
is determined by its interpretation of which rules the stu-
dent has not mastered. One of the major technical ac-
complishments of our work has been the development of
a set of methods for actually diagnosing the student's be-
havior and attributing segments of the problem-solving
behavior to the operation of specific production rules.
The various evaluations of the tutor have been generally
positive, and we attribute our success at instruction to
our success at interpreting the student's behavior. Typical
evaluations have students performing approximately one

standard deviation better than control classrooms (if given
same amount of time on task) or taking one half to one
third the time to reach the same achievement levels as
control students. Currently we are working with the Pitts-
burgh Public Schools (Anderson, 1992) to revolutionize
and greatly accelerate their high school mathematics cur-
riculum on the basis of our model-tracing approach.

The ability to attribute segments of the student's
problem-solving behavior to specific production rules has
also enabled us to monitor the performance of these rules.
We can measure how many errors students make on spe-
cific rules and how that error rate decreases with practice
on that specific rule. Figure 5 shows some data on this
issue from the LISP tutor (Anderson et al., 1989). That
figure displays mean number of errors (where the maxi-
mum possible is three). We can also see, when students
make no errors on a specific rule, how their time to per-
form the rule decreases with practice. This is displayed
in Figure 6 for the LISP tutor. Both figures display average
data and data from specific lessons to give a sense of vari-
ability. The dependent measure, opportunities, in these
figures refers to the number of times that rule has been
used in solving problems within that lesson. We look only
at production rules new to that lesson.

These learning curves have a number of interesting
features. First, they are plotted on log-log coordinates so
that a power function should appear as a linear relation-
ship. There appears to be a dramatic improvement in
performance from the first use of a production rule to
the second. After that, improvement is quite slow and
apparently satisfies a power-law function. Similar data
have been obtained with the geometry tutor. This dra-
matic first-trial improvement may reflect the compilation

Figure 5
Errors per Production Made by Students as a Function of
Amount of Practice in Lesson in Which Productions Were
Introduced
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Figure 6
Time for Coned Coding per Production as a Function of
Amount of Practice of Production in Lesson in Which
Production Was Introduced
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The number of such rules can be large. For a modest
semester's course in LISP, we estimate that approximately
500 separate production rules must be acquired.

Thus, the production rule is serving much of the
same function that had been assigned to the stimulus-
response bond in past theories. The skill appears to be
nothing more than the sum of these rules. Each rule is
learned independently, and individual differences are re-
flected in the learning of these rules and not the perfor-
mance of these rules once acquired. Complex cognitive
skill reflects the accretion of many specific pieces of
knowledge.

Conclusion
I think we are beginning to see rapid and important prog-
ress being made with respect to understanding how com-
plex problem-solving skills are learned. This progress has
depended on bringing together ideas from problem-solv-
ing theory and learning theory. We can understand ac-
quisition of complex problem-solving skills only when
we recognize the problem-solving structure that organizes
their performance while recognizing the rather simple
learning that governs the acquisition and strengthening
of the individual problem-solving operators.

of domain-specific production rules. There are problems
with advancing this interpretation too forcefully because
it rests on the exact way the data are averaged and on
relatively strong assumptions about scale. So, a first trial
discontinuity remains as an intriguing possibility awaiting
further research and analysis.

There are a number of additional points to make
about the learning curves found in Figures 5 and 6. If
one analyzes the data on the basis of surface-level cate-
gories of behavior such as writing variables, the improve-
ment in performance does not seem orderly. Systematic
learning functions show up only when defined in terms
of production rules. A second point is that these rules
appear to be learned independently. We do not find evi-
dence that similar types of rules tend to be learned at the
same rate as would be shown by intercorrelations in the
learning rates of thematically related productions. Thus,
the production rule does appear to be the right unit of
analysis.

We have been able to identify some general factors
that determine how well subjects perform within the tutor:
In the case of LISP, these factors turn out to be (a) the
speed with which subjects acquire new rules and (b) the
degree to which they retain old rules. In the case of ge-
ometry these factors turn out to be (a) the success students
have with algebraic rules and (b) the success they have
with rules that involve spatial relations (see Anderson, in
press, for a review). However, with remedial practice, stu-
dents of differing abilities can be brought to equivalent
levels of performance on these rules. Students brought to
equivalent levels perform equally well on various nontutor
posttests of ability. Thus, it would appear that acquiring
a skill is basically learning each of the individual rules.
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